
Predicting Center of Mass by Iterative Pushing for Object
Transportation and Manipulation

Steven M. Hyland, Jing Xiao, and Cagdas D. Onal

Abstract—Robotic manipulation tasks rely on a plethora of
environmental and payload information. One critical piece of
information for accurate manipulation is the center of mass
(CoM) of the object, which is essential for estimating the
dynamic response of the system and determining the payload
placement. Traditionally, the CoM of a payload is provided
prior to manipulation. In order to create a more robust and
comprehensive system, this information should be collected by
the robotic agent before or during the task run time. This paper
presents a method for approximating the CoM of a planar object
using a small-scale mobile robot to inform manipulation tasks.
On average, our system is able to converge on a CoM estimate
in under 30 seconds in simulation and 20 seconds in experiment,
with a relative error of 4.95% and 5.46%, respectively.

I. INTRODUCTION

Robotic manipulation focuses on moving an object, hence-
forth referred to as the ’payload’, from an initial position
to a desired final pose. Traditional implementations rely on
knowledge about the environment and payload, such as local-
ization information and payload inertial parameters. Robotic
manipulation relies on this information for two purposes: 1)
to understand how the grasped object will behave while in
motion, 2) to plan a placement strategy that does not result in
instability. In this study, we focus on reducing the reliance on
a priori knowledge of the inertial parameters, specifically, the
center of mass (CoM) of rigid payloads through estimation
during the manipulation task.

Inertial parameters are a function of an object’s volume,
volumetric distribution, and density [10]. Of these parame-
ters, CoM information is particularly useful for determining
an object’s interactions with the environment and robotic
agents. While humans are skilled at intuitively determining
the CoM of objects, either by a shift of the hand or by visual
inspection, the same cannot be said for automated systems.
This point is further reinforced when the object in question
has a non-uniform mass distribution, for instance, a loaded
cardboard shipping box. In this case, visual methods become
unfeasible, and some other approach must be taken.

This paper presents a method of estimating the center of
mass (CoM) of arbitrary objects via iterative pushing, both
in simulation and with a physical robotic experiment. Our
method converges to an accurate CoM prediction rapidly
during the manipulation task itself. Furthermore, the algo-
rithm requires very little prior knowledge of the payload,
and is applicable for a majority of rigid objects. The robotic
platform used to test our algorithm is based off the Delta-rho
system used for collective manipulation in [2], consisting of
a mobile robot for pushing the object.

Fig. 1. Physical System Setup. OptiTrack tracking markers are placed atop
both the robot and the payload to capture their position and orientation in
real time. A Mass was shifted to different positions on the payload to change
the CoM location. Markers were set at non-uniform intervals to discretize
the rotation of the object.

Our group’s previous work [2], [1], [5], and [6] focus on
2-dimensional collective manipulation using a decentralized
robot swarm, consisting of individual small mobile robots.
For these studies, however, the CoM location is either as-
sumed to be at the centroid (geometric center) of the object,
or must be provided a priori to the agents. The CoM is
utilized to determine the desired final pose of the object and
to inform the controller which handles the swarm’s motion
plans.

There are a number of approaches in the literature to solve
this problem autonomously, [3], [4], [10], [11] all estimate
the CoM using a virtual robotic manipulator and a complex
dynamical model of both dynamic pushing and quasi-static
pushing. [7] fortifies this approach by developing a deep
learning Push-Net model for iteratively learning the CoM.
The authors investigate their method on a Kinova MICO arm,
utilizing an RGBD camera for visual feedback. A unique
approach to the problem is explored in [8], where only
tactile feedback is used to determine a pushing scheme. This
force response allows for tetherless predictions, avoiding the
limitations implicated by vision or motion capture. However,
the detectable contact orientation is limited by the tactile
sensors.

Our earlier work in [12] and [13] researches an alterna-
tive approach, bypassing pushing procedures. We apply a
reinforcement learning algorithm to improve the estimated
CoM over time while grasping the payload and leveraging the
environment. We implement a virtual and physical robot arm
to examine two methods: 1) balancing a payload at the edge
of a flat surface until tipping occurs, 2) lifting a payload on



multiple sides, gathering torque data to inform the algorithm.
The previously discussed studies require complex artificial

intelligence frameworks, dynamic modeling, or both to deter-
mine the CoM. Conversely, the approach in this paper avoids
these computational costs and prior knowledge by leveraging
environmental friction properties. By employing a modified
binary search algorithm [14], in conjunction with voting
theorem (VT) [9], the line of action through the CoM can be
estimated from any point on the edge of the payload. Through
this, a dynamic model of the system becomes redundant;
these implications are discussed further in section II. While
our proposed method employs off-board vision-based control,
it can be supplemented or entirely replaced with a force or
torque sensor for tetherless CoM estimation.

II. PROBLEM DEFINITION AND METHODOLOGY

Given an arbitrary payload with an unknown mass dis-
tribution, this robotic system estimates the 2-dimensional
coordinates of the CoM on the object’s surface with respect to
its centroid. All computation is performed remotely, allowing
the robotic agent to be as simple as possible. The algorithm
inputs are the robot and payload pose, and the attachment
point with respect to the payload’s centroid at every time
step. Figure 2 illustrates the algorithm in action.

Some minimal assumptions are made prior to executing
the search. This work only estimates the 2-dimensional (x, y)
CoM location, and assumes the robot is able to maneuver the
payload. While the robot used in this research is lightweight
and can therefore only manipulate objects with similar mass,
the overarching approach is applicable to a robot with greater
manipulation capacity. This research also assumes the robot
begins pre-attached to the object by a singular rotary joint at
a fixed location, as opposed to a pinch-grasp or prehensile
grasping. A final assumption is that the interface between the
payload and the driving surface exhibits isotropic friction.
In other words, this version of the algorithm assumes the
center of mass and center of friction are coincident. While
this algorithm can be expanded to include these scenarios,
this case is beyond the scope of this work.

A. CoM Search Algorithm

Before beginning the search, some user-defined parameters
must first be selected. These parameters are tcheck, θmax, and
θmin. Establishing appropriate values for these parameters is
non-trivial: the specific values and reasoning is elaborated
further in Section V.

The algorithm begins by determining the initial bounds of
the binary search. These bounds describe the region within
which the CoM may lie. To preserve the simplicity of the
algorithm, the positive bound, bound(+) and negative bound,
bound(−) are initialized as ±90◦ perpendicular to the agent’s
attachment point to the payload, r, respectively. In practical
terms, the bounds are initialized tangent to the payload at r.
Next, the robot’s initial push direction must be calculated.
This push vector, heading, throughout the procedure is
calculated by bisecting the two bounds. This bisection is
rapidly calculated using Algorithm 2. In the initial case,

Fig. 2. Illustration of the CoM estimation algorithm process. Payload
depicted by pink circle. a) The initial bounds are tangent to the object
at the robot’s attachment point. Initial push direction bisects these bounds
towards the payload centroid (black dot). This causes clockwise rotation
around CoM. b) Positive bound is updated towards the previous push
direction. Again, new direction is set bisecting the bounds. This causes
counter-clockwise rotation. c) Next, the negative bound is updated. New
push direction is along the CoM line of action, no rotation is measured. d)
Line of action recorded. Repeat process from another attachment point to
acquire another line. Intersection is found for the final CoM estimate.

where the bisection of the bounds separated by ±180◦ results
in a singularity, the tie is broken by initializing heading as
−r. Thus, the initial push direction is set to always point
towards the payload’s centroid. The CoM search algorithm is
extended from a traditional binary search, in which the search
interval is regularly halved. The search interval bounds are
periodically updated as the robot takes measurements of the
payload’s rotation.

The robot measures the payload’s rotation, θt, every time
step, until one of two events occur: 1) θt exceeds the set
threshold, θmax, or 2) θt is below the measurable rotation
threshold, θmin. In the first case, the bounds are updated ac-
cording to Algorithm 2, and a new direction is decided which
satisfies the condition of bisecting the bounds. The second
case acts as the stop criteria for the simulation, however, a
second condition must first be met. That second condition
compares the time, t, since the previous measurement, to the
measurable rotation time threshold, tcheck. This condition
ensures that the payload exhibits minimal rotation for a
certain span of time. Consequently, if the stop condition is
met, the search ends and the final push direction is captured.
This final push direction describes the ’line of action’ (LoA)
of the CoM; the robot estimates that the CoM lies somewhere
along this line.

The entire process above corresponds to a single attach-
ment point r. This process is repeated with the robot attached
to a separate r. The greater the number of iterations that are
performed from different values of r, the higher the accu-
racy of the overall estimate. This study only performs two
iterations, from two attachment points, to examine a worst-
case estimate. With these two CoM lines, their intersection



is calculated with respect to the object, and the coordinates
of the CoM prediction are given.

The selection of distinct attachment points is not trivial;
there exists certain singularities. Consider the case of the
CoM coinciding the centroid of the circular payload. If the
attachment points are at 0◦ and 180◦ from the +x axis, the
estimated lines of action may be colinear and not intersect,
making an estimate impossible to generate. Thus, the two
attachment points were selected 90◦ apart to minimize the
possibility of being almost parallel due to uncertainty. Alter-
natively, we can select three or more attachment points and
guarantee non-colinearity. A future study will examine these
implication in further detail.

In this section and beyond, one ’iteration’ refers to an
agent pushing the payload from a single particular attachment
point; two iterations are required at minimum to make an
estimate.

III. SIMULATION

The prediction algorithm is simulated in MATLAB. The
robotic agent is modeled as a point force, and uses accel-
eration control to more closely model the behavior of the
physical experiment. That is, at every time step, the simula-
tion calculates a force that the agent applies to the payload,
which is then integrated using MATLAB’s ode45 ordinary
differential equation solver to model the system dynamics.
The direction of the applied force and the acceleration of
the agent is dependent on each step’s bound update results,
delineated in Algorithms 1 and 2.

In order to model the behavior of the payload with respect
to the agent’s pushes accurately, a dynamic and contact model
is used. The dynamic model considers isotropic friction
acting in the primary (X,Y ) plane, as well as rotational
friction about the Z axis. To satisfy the point force constraint,
the agent’s velocity is set equal to the velocity of the
attachment point, r, on the payload. This culminates in the
agent following its approximate desired trajectory, without
neglecting the influence of the payload’s inertia. The CoM
location is adjustable to anywhere on the face of the object
by providing coordinates with respect to the object centroid.
As explained below, this is a realistic model of the real world
interactions.

IV. PHYSICAL SYSTEM

The physical robot platform used for this research, shown
in Figure 1, was created and developed in [2], where it was
used for 2-dimensional collective manipulation.

In order to change the location of the CoM experimentally,
a 100 g weight was placed on top of the payload in specific
locations. A critical difference to simulation is that the CoM
is not necessarily at the coordinates where the weights are
placed. Instead, an averaging function is used to calculate its
actual position, seen in Equation (1). In this type of dual-
mass system, the actual CoM lies at a point between the two
masses - in this case, between the payload’s centroid, p1, and
the placement of the weights, p2.

Algorithm 1 Center of Mass Line of Action Search
1: procedure COM(r, θt, θmin, θmax, dinit, tcheck)
2: bound(±) ← ± ⊥ to r
3: heading ← dinit
4: while θt > θmin do
5: t← t+ 1
6: robot.move(heading)
7: θt ← robot.measure()
8: t, heading ← NEWBOUNDS(θt, bound(±),

heading)
9: if t > tcheck then

10: if θt < θmin then
11: break
12: else
13: t← 0
14: CoM(r) ← heading

Algorithm 2 Update Bounds Based on Payload Rotation
1: procedure NEWBOUNDS(θt, θmax, bound(±), heading)
2: if θt < θmax then
3: continue
4: else
5: if θt > 0 then
6: bound(−) ← heading
7: else
8: bound(+) ← heading

9: bisect← bound(+) + bound(−)

10: heading ← bisectunit
11: t← 0

CoM =
m1 · p1 +m2 · p2

m1 +m2
(1)

er = atan2

(
noW,nrW

)
(2)

ur =

{
er if er ≤ π

A · (B er+C) if er > π
(3)

For the experiment, the same general CoM search process
was performed, with certain modifications. The principal dif-
ference between the simulation and the physical experiment
is how the robotic agents are modeled. In simulation, the
agents were modeled as point forces along the perimeter
of the payload. This indicates that the simulated agent has
no dynamics - it has no rotational component, nor does
it consider any wheel traction with the driving surface.
The physical robot does indeed have both considerations to
contend with. The robot rotation is accounted for by imple-
menting an attitude correction term, er, which leverages null
space control to remain normal to the payload at all times,
seen in Equation (2). This term minimizes the error between
the robot’s heading, nrW , and the payload’s heading, noW ,
while rotating about its own grasp point. The strength of
this attitude correction term is calculated through a piecewise
exponential controller, described in equation (3). π represents



(a) (b)

(c) (d)
Fig. 3. Estimates of CoM of test position 4: (-15.12,7.56). Payload is rotated instead of camera view for consistency. (Top) Simulation of the CoM estimate
algorithm. The circular payload in pink is pushed by the agent. The bounds (blue arrows) capture the region within which the CoM may lie, updating after
each measurement. a) The agent pushes the object from attachment point 1, the rightmost vertex of the circle until a CoM line of action is determined. b)
The same process is repeated from attachment point 2, the topmost vertex of the circle. (Bottom) Experiment estimate. c) The robot pushed from leftmost
point. d) The robot pushes from topmost point.

the permissible lower bound for correction amplification:
if the raw error is below this number, it is passed to the
robot without modification. This allows for small attitude er-
rors, and prevents over-correction. The remaining constants,
A,B,C, are discussed in further detail in section V-C.

Jr =

3∑
w=1

 −sin(αw)
cos(αw)

ρwxcos(αw)− ρwysin(αw)

 (4)

The null space control comes from equation (4), repre-
senting the robot Jacobian from [6]. This allows for robot
rotation about its end effector to maintain a certain heading
while also avoiding collision with the payload. Here, w refers
to each of the three wheels, α refers to the angle between
the wheels, and ρw refers to the x and y positions of each
wheel.

V. RESULTS AND DISCUSSION

For both the MATLAB simulation and the experiment, a
circular payload of radius 86mm and mass 180g was tested.
Five different CoM positions were selected, with five trials
performed for each position. For the simulation, only a single
trial was conducted per position due to repeatability. A con-
trol experiment was conducted with the CoM positioned at
the payload centroid. The % error is defined as the Euclidean
distance between the estimate and the actual CoM, as a

fraction of the payload’s diameter. The five CoM positions
and the simulation and experimental results are shown in
Table I and Table II. The coordinates in the tables have been
rounded to one decimal for legibility.

For the sake of brevity, only the fourth CoM position,
(−15.12, 7.56), is visualized by Figure 3.

A. Parameters

Due to the accurate and repeatable nature of simulations,
we have the capacity to narrow the parameters to achieve
optimal results for the CoM search. However, to maintain
a fair comparison between the physical experiment, the
parameters were kept consistent across all trials and between
the simulation and experiment. The three parameters were
set to: tcheck = 3sec, θmin = 3◦, and θmax = 10◦.

The parameters tcheck and θmin define the stop condition
once minimal payload rotation is measured for some time.
Decreasing θmin or increasing tcheck amplifies the stiffness
of the system, and may result in a more accurate estimate
at the cost of longer run time, with the opposite case also
holding true. Conversely, θmax defines the bound update
condition. In simulation, this parameter is valid as long as
θmax > θmin due to the oracle knowledge of the payload
rotation. However in the experiment, wheel slippage and mo-
tion capture occlusion demands a larger difference between
the two parameters. This parameter has a direct relationship



Fig. 4. Experimental CoM estimates for position 4: (-15.12,7.56). Each pair
of colored lines represents a single pair of line of action (LoA) estimates.
Two attachment points at 180◦ and 90◦ from positive x-axis.

with run time. We found that θmax = 10◦ results in accurate
estimates, while avoiding large sacrifices to total execution
time.

B. Simulation Results

MATLAB’s ode45 solver allowed for the dynamics to be
accurately modeled across the simulation. ”Measurements”
taken by the robot are innately known, and provided at
every time step. Over all five CoM positions, the system
converged to a CoM line of action (LoA) prediction in an
average of 13.8 seconds, and a total average run time of
27.6 seconds. Depending on the position of the CoM, a
different moment will be generated at the agent attachment
point, hence the discrepancy between the completion time
and rotation magnitude between tested positions. Figure 3
shows the agent performing the search from the two specified
attachment points above. The robot moves from left to right
in all figures. Table I displays the predicted CoM vs actual
CoM location, as well as the relative error and run time of
the simulated system.

As mentioned previously, only a single trial was conducted
for each CoM position in simulation.

C. Physical Experiment Results

The physical agent is a small, 160mm diameter and 250g
holonomic mobile robot housing the ATmega1284p micro
controller as the processor for its custom circuit board. The
three-wheeled holonomic drive allows for the robot to apply
any desired 2-dimensional force to its payload, regardless of
its orientation. The robot is attached to the payload with a
standoff, connecting a particular edge point to the robot’s end

effector, which is a non-actuated piece of acrylic. The robot’s
end effector is permitted to swivel about this point. An Opti-
Track Motion Capture System was used to collect the robot
and payload poses, and the robot’s rotation measurements.
The robot and payload are shown in Figure 1. The payload
was created from a laser cut 1/4 in acrylic sheet, constructed
to match the simulation. The payload had a mass of 165 g,
and the CoM was modified by shifting a 100 g weight to
specific locations for testing. As described in Section IV, the
weight was placed such that the actual CoM locations were
consistent between the simulation and experiment. The same
procedure as the simulation was conducted on the physical
hardware, Figure 3 correspond to the two push iterations for
the fourth selected CoM position.

This robot was not a point force as modeled in simulation,
consequently, its attitude was corrected to avoid collisions
with the payload. As explained in Section IV, this was
performed by maintaining the robot normal to the payload’s
edges throughout the search. Since the robot has three degrees
of freedom and two actively controlled push vector compo-
nents, we used the remaining control authority to execute this
task. The intensity of this correction term was determined
through trial-and-error to select appropriate parameters to
the exponential function in equation (3). The parameters that
produced a desirable correction response were: A = 1.5,
B = 1.1, and C = 1.5, for a final exponential formula
in equation (5), wherein the piecewise formulation did not
amplify minor attitude errors.

ur =

{
er if er ≤ 5

1.5 · (1.1 er+26) if er > 5
(5)

A CoM LoA was estimated on average in 9.6 seconds,
for a total run time of 19.2 seconds. Figure 4 visualizes the
five trials for the selected CoM position. The clustering of
the estimates indicates relatively high precision, although the
majority of the group was off from the actual CoM by a few
millimeters. The attached video shows the CoM estimation
process both in simulation and in experiment.

TABLE I
SIMULATION RESULTS

Actual (mm) Estimate (mm) Error (mm) Error (%) Time (s)
1 (0,0) (0,0) 0 0 6.0
2 (22.7,-15.1) (15.0,-9.4) 9.59 5.57 39.9
3 (18.9,18.9) (20.1,9.2) 9.81 5.71 36.9
4 (-15.1,7.6) (-13.7,1.9) 5.85 3.40 37.5
5 (-11.3,-17.0) (-3.0,-14.2) 8.78 5.11 17.5

TABLE II
EXPERIMENT RESULTS

Actual (mm) Estimate (mm) Error (mm) Error (%) Time (s)
1 (0,0) (0.4,2.7) 2.72 1.58 16.9
2 (22.7,-15.1) (8.2,-9.3) 15.59 9.06 19.0
3 (18.9,18.9) (15.9,11.9) 7.64 4.44 18.0
4 (-15.1,7.6) (-15.3,0.6) 6.95 4.04 13.6
5 (-11.3,-17.0) (-12.0,-9.6) 7.42 4.32 18.5



D. Discussion

The overall average accuracy and relative error for all
positions and trials in simulation were, 8.51mm and 4.95%,
and for experiment were, 9.40mm and 5.46%, respectively.
As expected, the results from simulation were superior to
the physical experiment, in accuracy and error. Naturally, the
experiment has more variability than simulation, although as
discussed previously, the largest culprit for the discrepancy
between the simulation and experiment is the attitude correc-
tion of the robot. The attitude adjustments successfully pre-
vented collisions, however, caused undue directional changes
to the robot’s push vectors.

The simulation had a longer overall execution time for
each CoM position compared to the experiment. This is likely
due to the force magnitude imposed by the agent onto the
payload. The simulation approximates real-world dynamics,
although the force output by the agent in the experiment
is difficult to ascertain without the use of a force sensor. A
nominal value of 0.4N was used as the maximum permissible
force the agent applied. However, this longer run time is also
characterized by a more accurate result.

Interestingly, certain CoM positions yielded more pre-
cise estimates. For example, CoM positions two and three,
(22.68,−15.12) and (18.90, 18.90), respectively, resulted in
some of the highest average errors of all the trials. These two
positions are located in the two furthest quadrants from the
robot’s attachment point, r. This increased distance from r
yields a larger lever arm, which in turn produces an increased
moment. This larger moment causes a faster rotation and
an earlier bound update by the robot, however the robot’s
response to change directions may not be quick enough to
overcome the system’s residual momentum. One solution to
this problem is to bring the system to rest for a moment
after every measurement. This way, there are no lingering
dynamics to affect future pushes.

VI. CONCLUSION

This paper demonstrated the feasibility of finding the
two-dimensional center of mass (CoM) location of arbitrary
objects using a mobile robot platform. Furthermore, the
robot platform used for this study was previously used for
collective manipulation, demonstrating that this process can
be quickly performed during run time or just before collective
manipulation, and even other general manipulation tasks.
For objects with unknown mass distribution, or that have
an occluded non-obvious CoM, the information this method
provides can be used for other purposes, not necessarily
limited to robotic manipulation. These objects traditionally
prove difficult to extract CoM information from due to their
irregular characteristics.

The proposed approach was able to converge on a CoM
prediction within 30 seconds. Small deviations in starting
conditions and positions did not affect the accuracy of the
prediction.

A future extension is to adapt the system for thetherless
operation. That is, to remove the reliance on the motion
capture system for recording object rotation. One potential

avenue is to replace the end effector with a force sensor
which provides force direction and magnitude. Another area
of work is to test different approaches to determining the
center of mass, for example, by pulling the object instead,
or by using a learning framework to inform the robot over
time. Finally, another possible extension of this work would
be to test this proposed procedure during an actual collective
manipulation task.

REFERENCES

[1] Siamak G. Faal, Shadi T. Kalat, and Cagdas D. Onal. Decentralized ob-
stacle avoidance in collective object manipulation. In 2017 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pages 133–138,
Pasadena, CA, USA, 2017. IEEE.

[2] Siamak G. Faal, Shadi Tasdighi Kalat, and Cagdas D. Onal. Towards
collective manipulation without inter-agent communication. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing,
pages 275–280, Pisa Italy, April 2016. ACM.

[3] Ziyan Gao, Armagan Elibol, and Nak Young Chong. Estimating
the Center of Mass of an Unknown Object for Nonprehensile Ma-
nipulation. In 2022 IEEE International Conference on Mechatronics
and Automation (ICMA), pages 1755–1760, Guilin, Guangxi, China,
August 2022. IEEE.

[4] Ziyan Gao, Armagan Elibol, and Nak Young Chong. Estimating
the Center of Mass of an Unknown Object Via Dynamic Pushing.
In 2022 IEEE International Conference on Automation Science and
Engineering (CASE), page 4, Mexico City, Mexico, 2022. IEEE.

[5] Shadi T. Kalat, Siamak G. Faal, and Cagdas D. Onal. Scalable
collective impedance control of an object via a decentralized force
control method. In 2017 American Control Conference (ACC), pages
2680–2686, Seattle, WA, USA, May 2017. IEEE.

[6] Shadi Tasdighi Kalat, Siamak G. Faal, and Cagdas D. Onal. A
Decentralized, Communication-Free Force Distribution Method With
Application to Collective Object Manipulation. Journal of Dynamic
Systems, Measurement, and Control, 140(9):091012, September 2018.

[7] Juekun Li, Wee Sun Lee, and David Hsu. Push-Net: Deep Planar
Pushing for Objects with Unknown Physical Properties. In Robotics:
Science and Systems XIV. Robotics: Science and Systems Foundation,
June 2018.

[8] K.M. Lynch, H. Maekawa, and K. Tanie. Manipulation And Active
Sensing By Pushing Using Tactile Feedback. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 1, pages 416–421, Raleigh, NC, 1992. IEEE.

[9] Matthew T. Mason. Mechanics and Planning of Manipulator Pushing
Operations. The International Journal of Robotics Research, 5(3):53–
71, September 1986.

[10] Nikos Mavrakis, Amir M. Ghalamzan E., and Rustam Stolkin. Esti-
mating An Object’s Inertial Parameters By Robotic Pushing: A Data-
Driven Approach. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9537–9544, Las Vegas,
NV, USA, October 2020. IEEE.

[11] Nikos Mavrakis and Rustam Stolkin. Estimation and exploitation of
objects ’ inertial parameters in robotic grasping and manipulation:
A survey. Robotics and Autonomous Systems, 124:103374, February
2020.

[12] Sean McGovern, Huitan Mao, and Jing Xiao. Learning to Estimate
Centers of Mass of Arbitrary Objects. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1848–
1853, November 2019. ISSN: 2153-0866.

[13] Sean McGovern and Jing Xiao. Learning and Predicting Center
of Mass through Manipulation and Torque Sensing. In 2022 8th
International Conference on Mechatronics and Robotics Engineering
(ICMRE), pages 60–66, Munich, Germany, February 2022. IEEE.

[14] Robert Nowak. Generalized binary search. In 2008 46th Annual
Allerton Conference on Communication, Control, and Computing,
pages 568–574, Monticello, IL, USA, September 2008. IEEE.


	Introduction
	Problem Definition and Methodology
	CoM Search Algorithm

	Simulation
	Physical System
	Results and Discussion
	Parameters
	Simulation Results
	Physical Experiment Results
	Discussion

	Conclusion
	References

